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Abstract 

In many computation problem, the modular 

exponentiation is a common operation for scrambling 

secret data and is used by several public-key 

cryptosystems, such as the RSA method. In this paper, 

an algorithm is proved, which combines binary 

exponentiation method, the CMM 

(common-multiplicand multiplication) method, and the 

SDR (signed-digit recoding) method for fast modular 

exponentiation. The proposed algorithm developed in 

this paper can be easily implemented in general 

signed-digit computing machine, and is therefore well 

suited for parallel implementation to fast evaluate 

modular exponentiation. The computational complexity 

of the proposed algorithm is 0.46m3-0.92m2-3.67m 

multiplications, which is less than 0.75m3+0.75m 

multiplications in Dusse-Kaliski algorithm, 0.625m3+m2 

multiplications in Ha-Moon algorithm, where m is the 

bit-length of the exponent. 

Keywords: CMM, SDR, public-key cryptosystem, 

Montgomery modular reduction. 

摘要 

在許多計算的問題上，模指數是一個常見的問

題，針對公開金鑰密碼系統的加減密而言，更是如

此。在本文中所提出快速模指數的方法，結合了二元

模指數法、共同被乘數乘法以及符號元編碼法。這個

方法可以實現在以符號元為計算基礎的機器，亦適用

在平行處理的運算上。我們提出的方法需要

0.46m3-0.92 m2-3.67m個乘法量，而Dusse-Kaliski學者

提出的方法，需要 0.75m3+0.75m個乘法量，Ha-Moon

學者提出的方法，仍需要 0.625m3+m2個乘法量，相較

之下，我們提出的方法，複雜度低於其他兩派學者所

提出的方法。 

關鍵詞：共同被乘數乘法、符號元編碼法、公開金鑰

密碼系統、蒙哥馬利模減法。 

 

1. Introduction 
Modular exponentiation is the cornerstone 

computations performed in public-key cryptosystem. 

The modular exponentiation problem can be described 

as follows. Given M (message), E (public key), and N 

(modulus), compute the ciphertext C ≡ ME mod N. To 

evaluate the result for modular exponentiation of ME 

mod N, the very intuitive way is to break the modular 

exponentiation into a series of modular multiplications. 

An efficient evaluation of the modular 

exponentiation of ME mod N is very useful for public 

key cryptosystem and we need fast multiplication 

designs or novel exponentiation methods such as the 

Montgomery modular reduction method [1], binary 

exponentiation method [2], common-multiplicand 

multiplication (CMM) method [3-4]. In this paper, a 

method is proposed for speeding up modular 

exponentiation by using the binary exponentiation 

method, the common-multiplicand multiplication 

method, and the signed-digit recoding method. 

This paper is organized as follows. Some related 
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works for efficiently solving the modular exponentiation 

are introduced in Section 2. In Section 3, a fast modular 

exponentiation method is proposed. Then, the 

computational complexity of the proposed method is 

analyzed in Section 4. Finally, we conclude our work in 

Section 5. 

 

2. The Mathematical Preliminary 
In 1985, ElGamal proposed the ElGamal scheme 

[5], which can be used for the cryptographic applications 

of both digital signatures and encryptions. Modular 

exponentiation is composed of repetition of modular 

multiplication and is often the dominant part of modern 

cryptographic method. Taking the RSA public key 

cryptosystem for example, both the encryption and 

decryption operations are accomplished by modular 

exponentiation. 

In this section, we will give a brief review to the 

binary exponentiation method, CMM method, and SDR 

method. 

 

2.1. The Binary Exponentiation Method 
The most commonly used methods for computing 

exponentiation are the binary exponentiation methods. 

Its basic idea is to compute modular exponentiation by 

using the binary expression of the exponent E and the 

exponentiation operation is broken into a series of 

squaring and multiplication operations. Assume m 

denotes the bit-length of the exponent E, the exponent E 

can be expressed in binary representation as (em 

em-1…e2e1)2 and , where e
1

*2
m i

ii
E e

=
= ∑ i∈{0,1}. 

There are two useful modular exponentiation 

methods [2] in binary exponentiation methods, i.e., the 

LSB (least-significant-bit) method and the MSB 

(most-significant-bit) method. The LSB method is 

depicted in Algorithm 1. The MSB method is depicted in 

Algorithm 2. Both the MSB and LSB binary methods 

have the same computations for multiplication and 

squaring operations, therefore they have the same 

computational complexity. Take m-bit length exponent, 

for the average case, we assume the occurrence 

probabilities for both bit “1” and bit “0” are the same. 

Then, the expectation numbers for bit “1” and bit “0” are 

both 
2
m . Therefore, on average the complexities for 

both methods are 2* 1* 1.5
2 2
m m m+ =  modular 

multiplications. 

 

Algorithm 1: (LSB Binary Modular Exponentiation 

Method) 

Input: Message: M; Exponent: E = (emem-1…e2e1)2; 

0≤i≤m and ei∈{0,1} 

Output: Ciphertext: C = ME mod N 

begin 

C = 1 

S = M 

for i = 1 to m do         /*scan from right to left*/ 

begin 

if (ei = 1) then C = C⋅S mod N 

/*modular multiplication*/ 

S = S∗S mod N         /*modular squaring*/ 

end 

end 

 
Algorithm 2: (MSB Binary Modular Exponentiation 

Method) 

Input: Message: M; Exponent: E = (emem-1…e2e1)2; 

0≤i≤m and ei∈{0,1} 

Output: Ciphertext: C = ME mod N 

begin 

C = 1 

for i = m to 1 do         /*scan from left to right*/ 

begin 

C=C×C mod N     /*modular squaring*/ 

if (ei=1) C = C×M mod N 

/*modular multiplication*/ 

end 

end 
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2.2. The CMM (Common-Multiplicand 
Multiplication) Method 
In 1993, Yen and Laih [3] developed the method of 

common-multiplicand multiplication to improve the 

performance of the binary exponentiation method. Here 

we focus on the computations of {X*Yi∣i = 1, 2, …, t; 

t≥ 2}, where t is the number of division group. An 

arithmetic method [6-7] is presented and applies to the 

binary exponentiation method for the efficient evaluation 

of exponentiation. 

The following variables are required in the CMM 

method. 

Ycommon= AND Y1
t
i= i,                           (1) 

Yi,c= Yi XOR Ycommon.   for i = 1, 2, …, t 

             /* t is the number of division group/(2) 

Hence, each can be represented as: 

 3

Yi = Yi,c + Ycommon.                             (3) 

Therefore, the common-multiplicand multiplications 

X∗Yi (i = 1, 2, …, t) can be computed with the 

assistance of X*Ycommon as 

X*Yi = X*Yi,c + X*Ycommon for i = 1, 2, …, t.         (4) 

The basic idea of CMM method is to extract the 

common parts of multiplicands and then save the 

number of binary additions for the computation of 

common parts. By using the above method, the 

computations {X*Y1, X*Y2} can be represented as 

{X*Y1,c+ X*Ycommon, X*Y2,c+ X*Ycommon}.  

Let both X and Yi be m-bit integers. On average, the 

Hamming weights of Yi, Ycommon and  are ,i cY
2
m , 

2t
m , 

and 
2 2t
m m

− , respectively. The total number of binary 

additions for the common-multiplicand multiplication 

evaluation of {X*Yi∣i = 1, 2, …, t; t≥2} is 
2t
m + 

t∗(
2 t
m m

−
2

). Without the CMM algorithm, the evaluation 

of {X∗Yi∣i = 1, 2, …, t; t≥2} are computed one after 

another independently using total t*
2
m  binary addition. 

The performance improvement [3] of the 

common-multiplicand multiplication method can be 

denoted as： 

1

*
2

(1 )*2*( )
22 2

t

t t

m t t
m m m t tt

−
=

+ −+ −

.                                         (5) 

Based on the Eq. (5) shown above, the optimal 

performance can be obtained as 4
3

 when t = 2, which 

implies we need 1.5m (=2m* 3
4

) multiplications by using 

the CMM method for evaluating X*Y1 and X∗Y2.  

On average, by applying the CMM method and the 

binary exponentiation method, exponentiation can be 

evaluated by using (1.5 1) * 1.25
2

m+
= m multiplications for 

exponent E being a m-bit integer. Consider the 

application to public key cryptography for evaluating ME 

mod N, where both M and E are 512-bit, the binary 

exponentiation method and the CMM method combined 

with the binary exponentiation method require 768 

multiplications and 640 multiplications, respectively. 

 
2.3. The SDR (Signed-Digit Recoding) 

Method 
In 1993 [8-9], Arno and Wheeler proposed the 

signed-digit recoding method. This signed-digit recoding 

method is defined in Algorithm 3. 

 

Algorithm 3: (Signed-digit Recoding Method) 

Input: E = (eme m-1…e2e1)2

Output: ESD = (rmrm-1…r2r1)SD2, where 0 ≤ i ≤ m and 

ei∈{0,1,1 } 

begin 

c1 = 0; rm+2=0; rm+1=0 

for i = 1 to m+1 do 

begin 
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1
1 2

i i i
i

c e e
c +

+
+ +⎢ ⎥

= ⎢ ⎥
⎣ ⎦

 

1  2i i i ie c e c += + −

end 

end. 

 

3. The Proposed Method 
In this section, we give detailed descriptions for the 

proposed method for fast modular exponentiation used 

in public-key cryptosystems and information security 

applications. We propose an efficient method by using 

common-multiplicand multiplication method, 

Montgomery reduction method, and signed-digit method 

for fast evaluating ME mod N operation as shown in 

Algorithm 4 and Algorithm 5. 

 

Algorithm 4: (Montgomery Modular Reduction (MMR) 

Method) 

Input: A, B, N 

/*A, B and N are m-digit integers in base 2*/ 

Output: X                   /*X =AB∗2-m mod N*/ 

begin 

X = 0 

/*X = (Xm…X1X0)2 where m is the bit-length of X*/ 

for i = 1 to m do 

             /* scan from least significant bit */ 

begin 

X = X + AiB 

Y = X0 N0’ mod 2 

/* N0’=−N0
-1 mod 2, N’=−N-1 mod 2*/ 

*
2

X Y NX +
=  

end 

if (X≥N) then X = X−N 

/* X = AB∗2−m mod N =MMR(AB) */ 

end 

 
Algorithm 5: (Proposed Method) 

Input: M, ESD, N, R  /*ESD = (emem-1…e2e1)SD2, R =2m */ 

Output: , , , [1]
1

commonEC M= 1, [1]
2

cEC M= 2, [1]
3

cEC M=

[1]
1

commonE
D M= , 1, [1]

2
cE

D M= , 2, [1]
3

cE
D M=  

begin 

C1=C2=C3=D1=D2=D3=2m

/*M and N are m-digit integers in base 2*/ 

S=M*R mod N                    /* R=2m */ 

for i = 1 to m do 

/*scan exponent ESD from right to left */ 

begin 

if (e1i’=1) then C1=MMR(SC1) 

/*evaluate commonEM  for positive 

signed-digit*/ 

if (e1i’=1) then D1=MMR(SD1) 

/*evaluate commonEM  for negative 

signed-digit*/ 

if (e2i’=1) then C2 = MMR(SC2) 

/*evaluate 1, cEM    for positive 
signed-digit*/ 

if (e2i’=1 ) then D2 = MMR(SD2) 

/*evaluate 1, cEM    for negative 
signed-digit*/ 

if (e3i’=1) then C3 = MMR(SC3) 

/*evaluate 2, cEM    for positive 
signed-digit*/ 

if (e3i’=1 ) then D3 = MMR(SD3) 

/*evaluate 2, cEM    for negative 
signed-digit*/ 

S = MMR(SS) 

end 

end 

 
In order to execute the exponentiation operation, we 

divide the exponent ESD (m-bit) into two equal-length 

parts as E1 and E2, each with of 
2
m  bits. In the proposed 

method, we put the operation results of positive digit in 

the register C1 and C2, and we put the operation results 

of negative digit in the registers D1 and D2. The C1 and 

D1 are used to store the operation results in 

decomposition segment E1 of the signed-digit exponent 

ESD. Meanwhile, the C2 and D2 are used to store the 
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operation results in the decomposition segment E2 of 

exponent ESD. 

Our main goal for applying common-multiplicand 

multiplication technique is that the common part among 

MMR(SC1), MMR(SD1), MMR(SC2), MMR(SD2), and 

MMR(SS) can be therefore computed just once. If we 

denote T as S*2−i+1 mod N, the operations of S*2−i mod 

N for 1 ≤ i ≤ n−2 are repeatedly computed using the 

previous computation result of T, where S*2−i mod 

N=T*2−1 mod N. Assume we have two n-bits exponents 

E1 and E2 (where n=
2
m , and m is the bit-length of the 

exponent E), the exponentiation operation SDEM can be 

depicted as: 1 2 2 1|| *2 *
nE E E EEM M M M= =  (“||” is the 

concatenation operator)                        (6) 

Let the decomposition segments E1 and E2 be expressed 

as and , where e1 11
*2

m i
i ii

E e
=

= ∑ 2 21
*2

m i
i ii

E e
=

= ∑ 1i and e2i 

are signed-digits and e1i, e2i∈{0, 1, 1 }. Moreover, the 

exponentiations 1[1]EM  and 2[1]EM  are evaluated for 

handling positive signed-digit in E1 and E2, respectively. 

Similarly, the exponentiations 1[1]EM  and 2[1]EM  
are evaluated for handling negative signed-digit in E1 

and E2, respectively. Finally, we can output the 

exponentiation results of “ 1[1]EM  mod N, 2[1]EM  mod 

N, 1[1]EM  mod N, and 2[1]EM  mod N” into four 
different registers C1, C2, D1, D2, respectively. By 

applying the common part extraction technique of the 

common-multiplicand multiplication method upon the 

two exponent segments E1 and E2, we can obtain the 

three temporary exponents Ecommon, E1, c, E2, c [10-12]. 

 

4. Computational Complexity Analyses 
In this section, we first analyze the performance of 

the proposed method and then calculate the number of 

binary additions and modular multiplications needed. 

Let the m-bit exponent E be recoded as signed-digit 

representation ESD. On average, the occurrence 

probabilities of digits, “1” and “1”, are the same [8]. We 

can thus have the occurrence probabilities of “0”, “1” 

and “1 ” as {
probability

2(0)
3

P = , 
probability probability

1(1) (1)
6

P P= = }. 

In the proposed method, based on the 

computational analyses of Montgomery reduction 

method [6], the probability of executing modular 

multiplication MMR(SC1), MMR(SC2), or MMR(SC3) in 

the proposed method is all equivalent to the occurrence 

probability of signed-digit “1” in ESD. Therefore, the 

operations MMR(SC1), MMR(SC2), and MMR(SC3) 

total require 

(3/6)*[1.5m*(n-2)*(n+1)]=(3/4)*m*(n2-n-2)        (7) 

single-precision multiplications, where m is the 

bit-length of the exponent E and n=(m/2). 

Similarly, operations MMR(SD1), MMR(SD2), and 

MMR(SD3) total require 

(3/6)*[1.5m*(n-2)*(n+1)]=(3/4)*m*(n2-n-2)        (8) 

single-precision multiplications. 

The operation MMR(SS) requires 

(2/3)*[0.5m*(n-2)*(n+1)]=(1/3)*m*(n2-n-2)        (9) 

single-precision multiplications. 

The Ha-Moon algorithm takes 0.625m3+m2 

multiplications [6] and the Dusse-Kalisk algorithm takes 

0.75m3+0.75m multiplications [10] for calculating an 

m-bits exponent exponentiation. However, the proposed 

method only takes 

(3/4)*m*(n2-n-2)+ (3/4)*m*(n2-n-2)+ (1/3)*m*(n2-n-2) 
≈0.458m3-0.916m2-3.666m                    (10) 

single-precision multiplications. 

Take a 512-bit exponent E for example to evaluate ME, 

the number of the multiplications by using the proposed 

method is 61,263,141 multiplications, the number of the 

multiplications by using the Dusse-Kaliski algorithm 

[13-14] is 100,663,680 multiplications, and the number 

of the multiplications by using the Ha-Moon [11, 15-16] 

algorithm is 84,148,224 multiplications. 

 
5. Conclusions 

As we know, one of the most important computer 

arithmetic operations for public-key cryptosystem is 

modular exponentiation. In this paper, a method for 
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speeding up modular exponentiation is investigated by 

using the binary exponentiation method, CMM method, 

and SDR method. Based on the computational 

complexity analyses, we observe that the proposed 

algorithm can further speed up, i.e., the total number of 

multiplications can be reduced. On average, the total 

number of multiplications can be reduced by about 

39.14%, 37.35% as compared with Dusse-Kaliski 

algorithm, Ha-Moon algorithm. 
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