
Efficient Modular Exponentiation Using Common-Multiplicand
Multiplication and Signed-Digit Recoding Techniques

Chia-Long Wu

Department of Aviation & Communication
Electronics, Chinese Air Force Institute of

Technology, Kaohsiung 82042, Taiwan,
R.O.C.

E-mail: chialongwu@seed.net.tw

Der-Chyuan Lou* and Te-Jen Chang*

*Department of Electrical Engineering,
Chung Cheng Institute of Technology,

National Defense University, Tahsi,
Taoyuan 33509, Taiwan, R.O.C.
E-mail: dclouprof@gmail.com

Abstract

In many computation problem, the modular

exponentiation is a common operation for scrambling

secret data and is used by several public-key

cryptosystems, such as the RSA method. In this paper,

an algorithm is proved, which combines binary

exponentiation method, the CMM

(common-multiplicand multiplication) method, and the

SDR (signed-digit recoding) method for fast modular

exponentiation. The proposed algorithm developed in

this paper can be easily implemented in general

signed-digit computing machine, and is therefore well

suited for parallel implementation to fast evaluate

modular exponentiation. The computational complexity

of the proposed algorithm is 0.46m3-0.92m2-3.67m

multiplications, which is less than 0.75m3+0.75m

multiplications in Dusse-Kaliski algorithm, 0.625m3+m2

multiplications in Ha-Moon algorithm, where m is the

bit-length of the exponent.

Keywords: CMM, SDR, public-key cryptosystem,

Montgomery modular reduction.

摘要

在許多計算的問題上，模指數是一個常見的問

題，針對公開金鑰密碼系統的加減密而言，更是如

此。在本文中所提出快速模指數的方法，結合了二元

模指數法、共同被乘數乘法以及符號元編碼法。這個

方法可以實現在以符號元為計算基礎的機器，亦適用

在平行處理的運算上。我們提出的方法需要

0.46m3-0.92 m2-3.67m個乘法量，而Dusse-Kaliski學者

提出的方法，需要 0.75m3+0.75m個乘法量，Ha-Moon

學者提出的方法，仍需要 0.625m3+m2個乘法量，相較

之下，我們提出的方法，複雜度低於其他兩派學者所

提出的方法。

關鍵詞：共同被乘數乘法、符號元編碼法、公開金鑰

密碼系統、蒙哥馬利模減法。

1. Introduction
Modular exponentiation is the cornerstone

computations performed in public-key cryptosystem.

The modular exponentiation problem can be described

as follows. Given M (message), E (public key), and N

(modulus), compute the ciphertext C ≡ ME mod N. To

evaluate the result for modular exponentiation of ME

mod N, the very intuitive way is to break the modular

exponentiation into a series of modular multiplications.

An efficient evaluation of the modular

exponentiation of ME mod N is very useful for public

key cryptosystem and we need fast multiplication

designs or novel exponentiation methods such as the

Montgomery modular reduction method [1], binary

exponentiation method [2], common-multiplicand

multiplication (CMM) method [3-4]. In this paper, a

method is proposed for speeding up modular

exponentiation by using the binary exponentiation

method, the common-multiplicand multiplication

method, and the signed-digit recoding method.

This paper is organized as follows. Some related

 1

TANET2007臺灣網際網路研討會論文集〔一〕

mailto:chialongwu@seed.net.tw

works for efficiently solving the modular exponentiation

are introduced in Section 2. In Section 3, a fast modular

exponentiation method is proposed. Then, the

computational complexity of the proposed method is

analyzed in Section 4. Finally, we conclude our work in

Section 5.

2. The Mathematical Preliminary
In 1985, ElGamal proposed the ElGamal scheme

[5], which can be used for the cryptographic applications

of both digital signatures and encryptions. Modular

exponentiation is composed of repetition of modular

multiplication and is often the dominant part of modern

cryptographic method. Taking the RSA public key

cryptosystem for example, both the encryption and

decryption operations are accomplished by modular

exponentiation.

In this section, we will give a brief review to the

binary exponentiation method, CMM method, and SDR

method.

2.1. The Binary Exponentiation Method
The most commonly used methods for computing

exponentiation are the binary exponentiation methods.

Its basic idea is to compute modular exponentiation by

using the binary expression of the exponent E and the

exponentiation operation is broken into a series of

squaring and multiplication operations. Assume m

denotes the bit-length of the exponent E, the exponent E

can be expressed in binary representation as (em

em-1…e2e1)2 and , where e
1

*2
m i

ii
E e

=
= ∑ i∈{0,1}.

There are two useful modular exponentiation

methods [2] in binary exponentiation methods, i.e., the

LSB (least-significant-bit) method and the MSB

(most-significant-bit) method. The LSB method is

depicted in Algorithm 1. The MSB method is depicted in

Algorithm 2. Both the MSB and LSB binary methods

have the same computations for multiplication and

squaring operations, therefore they have the same

computational complexity. Take m-bit length exponent,

for the average case, we assume the occurrence

probabilities for both bit “1” and bit “0” are the same.

Then, the expectation numbers for bit “1” and bit “0” are

both
2
m . Therefore, on average the complexities for

both methods are 2* 1* 1.5
2 2
m m m+ = modular

multiplications.

Algorithm 1: (LSB Binary Modular Exponentiation

Method)

Input: Message: M; Exponent: E = (emem-1…e2e1)2;

0≤i≤m and ei∈{0,1}

Output: Ciphertext: C = ME mod N

begin

C = 1

S = M

for i = 1 to m do /*scan from right to left*/

begin

if (ei = 1) then C = C⋅S mod N

/*modular multiplication*/

S = S∗S mod N /*modular squaring*/

end

end

Algorithm 2: (MSB Binary Modular Exponentiation

Method)

Input: Message: M; Exponent: E = (emem-1…e2e1)2;

0≤i≤m and ei∈{0,1}

Output: Ciphertext: C = ME mod N

begin

C = 1

for i = m to 1 do /*scan from left to right*/

begin

C=C×C mod N /*modular squaring*/

if (ei=1) C = C×M mod N

/*modular multiplication*/

end

end

 2

TrackE-網際與資訊安全

2.2. The CMM (Common-Multiplicand
Multiplication) Method
In 1993, Yen and Laih [3] developed the method of

common-multiplicand multiplication to improve the

performance of the binary exponentiation method. Here

we focus on the computations of {X*Yi∣i = 1, 2, …, t;

t≥ 2}, where t is the number of division group. An

arithmetic method [6-7] is presented and applies to the

binary exponentiation method for the efficient evaluation

of exponentiation.

The following variables are required in the CMM

method.

Ycommon= AND Y1
t
i= i, (1)

Yi,c= Yi XOR Ycommon. for i = 1, 2, …, t

 /* t is the number of division group/(2)

Hence, each can be represented as:

 3

Yi = Yi,c + Ycommon. (3)

Therefore, the common-multiplicand multiplications

X∗Yi (i = 1, 2, …, t) can be computed with the

assistance of X*Ycommon as

X*Yi = X*Yi,c + X*Ycommon for i = 1, 2, …, t. (4)

The basic idea of CMM method is to extract the

common parts of multiplicands and then save the

number of binary additions for the computation of

common parts. By using the above method, the

computations {X*Y1, X*Y2} can be represented as

{X*Y1,c+ X*Ycommon, X*Y2,c+ X*Ycommon}.

Let both X and Yi be m-bit integers. On average, the

Hamming weights of Yi, Ycommon and are ,i cY
2
m ,

2t
m ,

and
2 2t
m m

− , respectively. The total number of binary

additions for the common-multiplicand multiplication

evaluation of {X*Yi∣i = 1, 2, …, t; t≥2} is
2t
m +

t∗(
2 t
m m

−
2

). Without the CMM algorithm, the evaluation

of {X∗Yi∣i = 1, 2, …, t; t≥2} are computed one after

another independently using total t*
2
m binary addition.

The performance improvement [3] of the

common-multiplicand multiplication method can be

denoted as：

1

*
2

(1)*2*()
22 2

t

t t

m t t
m m m t tt

−
=

+ −+ −

. (5)

Based on the Eq. (5) shown above, the optimal

performance can be obtained as 4
3

 when t = 2, which

implies we need 1.5m (=2m* 3
4

) multiplications by using

the CMM method for evaluating X*Y1 and X∗Y2.

On average, by applying the CMM method and the

binary exponentiation method, exponentiation can be

evaluated by using (1.5 1) * 1.25
2

m+
= m multiplications for

exponent E being a m-bit integer. Consider the

application to public key cryptography for evaluating ME

mod N, where both M and E are 512-bit, the binary

exponentiation method and the CMM method combined

with the binary exponentiation method require 768

multiplications and 640 multiplications, respectively.

2.3. The SDR (Signed-Digit Recoding)

Method
In 1993 [8-9], Arno and Wheeler proposed the

signed-digit recoding method. This signed-digit recoding

method is defined in Algorithm 3.

Algorithm 3: (Signed-digit Recoding Method)

Input: E = (eme m-1…e2e1)2

Output: ESD = (rmrm-1…r2r1)SD2, where 0 ≤ i ≤ m and

ei∈{0,1,1 }

begin

c1 = 0; rm+2=0; rm+1=0

for i = 1 to m+1 do

begin

TANET2007臺灣網際網路研討會論文集〔一〕

1
1 2

i i i
i

c e e
c +

+
+ +⎢ ⎥

= ⎢ ⎥
⎣ ⎦

1 2i i i ie c e c += + −

end

end.

3. The Proposed Method
In this section, we give detailed descriptions for the

proposed method for fast modular exponentiation used

in public-key cryptosystems and information security

applications. We propose an efficient method by using

common-multiplicand multiplication method,

Montgomery reduction method, and signed-digit method

for fast evaluating ME mod N operation as shown in

Algorithm 4 and Algorithm 5.

Algorithm 4: (Montgomery Modular Reduction (MMR)

Method)

Input: A, B, N

/*A, B and N are m-digit integers in base 2*/

Output: X /*X =AB∗2-m mod N*/

begin

X = 0

/*X = (Xm…X1X0)2 where m is the bit-length of X*/

for i = 1 to m do

 /* scan from least significant bit */

begin

X = X + AiB

Y = X0 N0’ mod 2

/* N0’=−N0
-1 mod 2, N’=−N-1 mod 2*/

*
2

X Y NX +
=

end

if (X≥N) then X = X−N

/* X = AB∗2−m mod N =MMR(AB) */

end

Algorithm 5: (Proposed Method)

Input: M, ESD, N, R /*ESD = (emem-1…e2e1)SD2, R =2m */

Output: , , , [1]
1

commonEC M= 1, [1]
2

cEC M= 2, [1]
3

cEC M=

[1]
1

commonE
D M= , 1, [1]

2
cE

D M= , 2, [1]
3

cE
D M=

begin

C1=C2=C3=D1=D2=D3=2m

/*M and N are m-digit integers in base 2*/

S=M*R mod N /* R=2m */

for i = 1 to m do

/*scan exponent ESD from right to left */

begin

if (e1i’=1) then C1=MMR(SC1)

/*evaluate commonEM for positive

signed-digit*/

if (e1i’=1) then D1=MMR(SD1)

/*evaluate commonEM for negative

signed-digit*/

if (e2i’=1) then C2 = MMR(SC2)

/*evaluate 1, cEM for positive
signed-digit*/

if (e2i’=1) then D2 = MMR(SD2)

/*evaluate 1, cEM for negative
signed-digit*/

if (e3i’=1) then C3 = MMR(SC3)

/*evaluate 2, cEM for positive
signed-digit*/

if (e3i’=1) then D3 = MMR(SD3)

/*evaluate 2, cEM for negative
signed-digit*/

S = MMR(SS)

end

end

In order to execute the exponentiation operation, we

divide the exponent ESD (m-bit) into two equal-length

parts as E1 and E2, each with of
2
m bits. In the proposed

method, we put the operation results of positive digit in

the register C1 and C2, and we put the operation results

of negative digit in the registers D1 and D2. The C1 and

D1 are used to store the operation results in

decomposition segment E1 of the signed-digit exponent

ESD. Meanwhile, the C2 and D2 are used to store the

 4

TrackE-網際與資訊安全

operation results in the decomposition segment E2 of

exponent ESD.

Our main goal for applying common-multiplicand

multiplication technique is that the common part among

MMR(SC1), MMR(SD1), MMR(SC2), MMR(SD2), and

MMR(SS) can be therefore computed just once. If we

denote T as S*2−i+1 mod N, the operations of S*2−i mod

N for 1 ≤ i ≤ n−2 are repeatedly computed using the

previous computation result of T, where S*2−i mod

N=T*2−1 mod N. Assume we have two n-bits exponents

E1 and E2 (where n=
2
m , and m is the bit-length of the

exponent E), the exponentiation operation SDEM can be

depicted as: 1 2 2 1|| *2 *
nE E E EEM M M M= = (“||” is the

concatenation operator) (6)

Let the decomposition segments E1 and E2 be expressed

as and , where e1 11
*2

m i
i ii

E e
=

= ∑ 2 21
*2

m i
i ii

E e
=

= ∑ 1i and e2i

are signed-digits and e1i, e2i∈{0, 1, 1 }. Moreover, the

exponentiations 1[1]EM and 2[1]EM are evaluated for

handling positive signed-digit in E1 and E2, respectively.

Similarly, the exponentiations 1[1]EM and 2[1]EM
are evaluated for handling negative signed-digit in E1

and E2, respectively. Finally, we can output the

exponentiation results of “ 1[1]EM mod N, 2[1]EM mod

N, 1[1]EM mod N, and 2[1]EM mod N” into four
different registers C1, C2, D1, D2, respectively. By

applying the common part extraction technique of the

common-multiplicand multiplication method upon the

two exponent segments E1 and E2, we can obtain the

three temporary exponents Ecommon, E1, c, E2, c [10-12].

4. Computational Complexity Analyses
In this section, we first analyze the performance of

the proposed method and then calculate the number of

binary additions and modular multiplications needed.

Let the m-bit exponent E be recoded as signed-digit

representation ESD. On average, the occurrence

probabilities of digits, “1” and “1”, are the same [8]. We

can thus have the occurrence probabilities of “0”, “1”

and “1 ” as {
probability

2(0)
3

P = ,
probability probability

1(1) (1)
6

P P= = }.

In the proposed method, based on the

computational analyses of Montgomery reduction

method [6], the probability of executing modular

multiplication MMR(SC1), MMR(SC2), or MMR(SC3) in

the proposed method is all equivalent to the occurrence

probability of signed-digit “1” in ESD. Therefore, the

operations MMR(SC1), MMR(SC2), and MMR(SC3)

total require

(3/6)*[1.5m*(n-2)*(n+1)]=(3/4)*m*(n2-n-2) (7)

single-precision multiplications, where m is the

bit-length of the exponent E and n=(m/2).

Similarly, operations MMR(SD1), MMR(SD2), and

MMR(SD3) total require

(3/6)*[1.5m*(n-2)*(n+1)]=(3/4)*m*(n2-n-2) (8)

single-precision multiplications.

The operation MMR(SS) requires

(2/3)*[0.5m*(n-2)*(n+1)]=(1/3)*m*(n2-n-2) (9)

single-precision multiplications.

The Ha-Moon algorithm takes 0.625m3+m2

multiplications [6] and the Dusse-Kalisk algorithm takes

0.75m3+0.75m multiplications [10] for calculating an

m-bits exponent exponentiation. However, the proposed

method only takes

(3/4)*m*(n2-n-2)+ (3/4)*m*(n2-n-2)+ (1/3)*m*(n2-n-2)
≈0.458m3-0.916m2-3.666m (10)

single-precision multiplications.

Take a 512-bit exponent E for example to evaluate ME,

the number of the multiplications by using the proposed

method is 61,263,141 multiplications, the number of the

multiplications by using the Dusse-Kaliski algorithm

[13-14] is 100,663,680 multiplications, and the number

of the multiplications by using the Ha-Moon [11, 15-16]

algorithm is 84,148,224 multiplications.

5. Conclusions

As we know, one of the most important computer

arithmetic operations for public-key cryptosystem is

modular exponentiation. In this paper, a method for

 5

TANET2007臺灣網際網路研討會論文集〔一〕

 6

speeding up modular exponentiation is investigated by

using the binary exponentiation method, CMM method,

and SDR method. Based on the computational

complexity analyses, we observe that the proposed

algorithm can further speed up, i.e., the total number of

multiplications can be reduced. On average, the total

number of multiplications can be reduced by about

39.14%, 37.35% as compared with Dusse-Kaliski

algorithm, Ha-Moon algorithm.

References
[1] P. L. Montgomery, “Modular multiplication

without trial division,” Mathematics of

Computation, vol. 44, no. 170, pp. 519-521, April

1985.

[2] D. E. Knuth, The Art of Computer Programming,

Vol. II: Seminumerical Algorithms, 3rd Edition,

MA: Addison-Wesley, 1997.

[3] S.-M. Yen and C.-S. Laih, “Common-multiplicand

multiplication and its applications to public key

cryptography,” Electronics Letters, vol. 29, no. 17,

pp. 1583-1584, Aug. 1993.

[4] T.-C. Wu and Y.-S. Chang, “Improved

generalization common-multiplicand

multiplications algorithm of Yen and Laih,”

Electronics Letters, vol. 31, no. 20, pp. 1738-1739,

Sept. 1995.

[5] T. ElGamal, “A public key cryptosystem and a

signature scheme based on discrete logarithms,”

IEEE Transactions on Information Theory, vol. 31,

pp. 469-472, July 1985.

[6] W. Shugang, C. Shuangching, and K. Shimizu,

“Fast modular multiplication using Booth recoding

based on signed-digit number arithmetic,”

Proceedings of IEEE Asia-Pacific Conference on

Circuits and Systems (APCCAS) , 2002, vol. 2, pp.

31-36.

[7] D.-C. Lou, C.-L. Wu, and C.-Y. Chen, “Fast

exponentiation by folding the signed-digit

exponent in half,” International Journal of

Computer Mathematics, vol. 80, no. 10, pp.

1251-1259, Oct. 2003.

[8] W. Stallings, Cryptography and Network Security:

Principles and Practice, Prentice-Hall, 1999.

[9] I. Koren, Computer Arithmetic Algorithms, 2nd

Edition, A. K. Peters, Natick, MA, 2002.

[10] S. R. Dusse and B. S. Kaliski, “A cryptographic

library for the Motorola DSP 56000,”Proceedings

of EUROCRYPT’90 on Advance in Cryptology,

LNCS, Springer-Verlag, 1990, vol. 473, pp.

230-244.

[11] J.-C. Ha and S.-J. Moon, “A common-multiplicand

method to the Montgomery algorithm for speeding

up exponentiation,” Information Processing

Letters, vol. 66, no. 2, pp. 105-107, April 1998.

[12] A. Avizienis, “Signed-digit number representation

for fast parallel arithmetic,” IRE Transaction on

Electronic Computers, vol. EC-10, no. 3, pp.

389-400, Sep. 1961.

[13] S. Arno and F. S. Wheeler, “Signed-digit

representations of minimal Hamming weight,”

IEEE Transactions on Computers, vol. 42, no. 8,

pp. 1007-1010, Aug. 1993.

[14] S.-M. Yen, “Improved common-multiplicand

multiplication and fast exponentiation by exponent

decomposition,” IEICE Transactions on

Fundamentals, vol. E80-A, no. 6, pp. 1160-1163,

June 1997.

[15] J. Chung and A. M. Hasan, “Low-weight

polynomial form integers for efficient modular

multiplication,” IEEE Transactions on Computers,

vol. 56, no. 1, pp. 44-57, Jan. 2007.

[16] C.-L. Wu, D.-C. Lou, J.-C. Lai and T.-J. Chang,

“Fast modular multi-exponentiation using

modified complex arithmetic,” Applied

Mathematics and Computation, vol. 186, no. 2, pp.

1065-1074, March 2007.

TrackE-網際與資訊安全

	Efficient Modular Exponentiation Using Common-Multiplicand Multiplication and Signed-Digit Recoding Techniques
	
	Abstract

